libQGLViewer  Version 2.7.0
Signals | Public Member Functions | List of all members
Frame Class Reference

The Frame class represents a coordinate system, defined by a position and an orientation. More...

Signals

void modified ()
 
void interpolated ()
 

Public Member Functions

 Frame ()
 
virtual ~Frame ()
 
 Frame (const Frame &frame)
 
Frame & operator= (const Frame &frame)
 

World coordinates position and orientation

 Frame (const Vec &position, const Quaternion &orientation)
 
void setPosition (const Vec &position)
 
void setPosition (qreal x, qreal y, qreal z)
 
void setPositionWithConstraint (Vec &position)
 
void setOrientation (const Quaternion &orientation)
 
void setOrientation (qreal q0, qreal q1, qreal q2, qreal q3)
 
void setOrientationWithConstraint (Quaternion &orientation)
 
void setPositionAndOrientation (const Vec &position, const Quaternion &orientation)
 
void setPositionAndOrientationWithConstraint (Vec &position, Quaternion &orientation)
 
Vec position () const
 
Quaternion orientation () const
 
void getPosition (qreal &x, qreal &y, qreal &z) const
 
void getOrientation (qreal &q0, qreal &q1, qreal &q2, qreal &q3) const
 

Local translation and rotation w/r reference Frame

void setTranslation (const Vec &translation)
 
void setTranslation (qreal x, qreal y, qreal z)
 
void setTranslationWithConstraint (Vec &translation)
 
void setRotation (const Quaternion &rotation)
 
void setRotation (qreal q0, qreal q1, qreal q2, qreal q3)
 
void setRotationWithConstraint (Quaternion &rotation)
 
void setTranslationAndRotation (const Vec &translation, const Quaternion &rotation)
 
void setTranslationAndRotationWithConstraint (Vec &translation, Quaternion &rotation)
 
Vec translation () const
 
Quaternion rotation () const
 
void getTranslation (qreal &x, qreal &y, qreal &z) const
 
void getRotation (qreal &q0, qreal &q1, qreal &q2, qreal &q3) const
 

Frame hierarchy

const Frame * referenceFrame () const
 
void setReferenceFrame (const Frame *const refFrame)
 
bool settingAsReferenceFrameWillCreateALoop (const Frame *const frame)
 

Frame modification

void translate (Vec &t)
 
void translate (const Vec &t)
 
void translate (qreal x, qreal y, qreal z)
 
void translate (qreal &x, qreal &y, qreal &z)
 
void rotate (Quaternion &q)
 
void rotate (const Quaternion &q)
 
void rotate (qreal q0, qreal q1, qreal q2, qreal q3)
 
void rotate (qreal &q0, qreal &q1, qreal &q2, qreal &q3)
 
void rotateAroundPoint (Quaternion &rotation, const Vec &point)
 
void rotateAroundPoint (const Quaternion &rotation, const Vec &point)
 
void alignWithFrame (const Frame *const frame, bool move=false, qreal threshold=0.0)
 
void projectOnLine (const Vec &origin, const Vec &direction)
 

Coordinate system transformation of 3D coordinates

Vec coordinatesOf (const Vec &src) const
 
Vec inverseCoordinatesOf (const Vec &src) const
 
Vec localCoordinatesOf (const Vec &src) const
 
Vec localInverseCoordinatesOf (const Vec &src) const
 
Vec coordinatesOfIn (const Vec &src, const Frame *const in) const
 
Vec coordinatesOfFrom (const Vec &src, const Frame *const from) const
 
void getCoordinatesOf (const qreal src[3], qreal res[3]) const
 
void getInverseCoordinatesOf (const qreal src[3], qreal res[3]) const
 
void getLocalCoordinatesOf (const qreal src[3], qreal res[3]) const
 
void getLocalInverseCoordinatesOf (const qreal src[3], qreal res[3]) const
 
void getCoordinatesOfIn (const qreal src[3], qreal res[3], const Frame *const in) const
 
void getCoordinatesOfFrom (const qreal src[3], qreal res[3], const Frame *const from) const
 

Coordinate system transformation of vectors

Vec transformOf (const Vec &src) const
 
Vec inverseTransformOf (const Vec &src) const
 
Vec localTransformOf (const Vec &src) const
 
Vec localInverseTransformOf (const Vec &src) const
 
Vec transformOfIn (const Vec &src, const Frame *const in) const
 
Vec transformOfFrom (const Vec &src, const Frame *const from) const
 
void getTransformOf (const qreal src[3], qreal res[3]) const
 
void getInverseTransformOf (const qreal src[3], qreal res[3]) const
 
void getLocalTransformOf (const qreal src[3], qreal res[3]) const
 
void getLocalInverseTransformOf (const qreal src[3], qreal res[3]) const
 
void getTransformOfIn (const qreal src[3], qreal res[3], const Frame *const in) const
 
void getTransformOfFrom (const qreal src[3], qreal res[3], const Frame *const from) const
 

Constraint on the displacement

Constraintconstraint () const
 
void setConstraint (Constraint *const constraint)
 

Associated matrices

const GLdouble * matrix () const
 
void getMatrix (GLdouble m[4][4]) const
 
void getMatrix (GLdouble m[16]) const
 
const GLdouble * worldMatrix () const
 
void getWorldMatrix (GLdouble m[4][4]) const
 
void getWorldMatrix (GLdouble m[16]) const
 
void setFromMatrix (const GLdouble m[4][4])
 
void setFromMatrix (const GLdouble m[16])
 

Inversion of the transformation

Frame inverse () const
 
Frame worldInverse () const
 

XML representation

virtual QDomElement domElement (const QString &name, QDomDocument &document) const
 
virtual void initFromDOMElement (const QDomElement &element)
 

Detailed Description

The Frame class represents a coordinate system, defined by a position and an orientation.

A Frame is a 3D coordinate system, represented by a position() and an orientation(). The order of these transformations is important: the Frame is first translated and then rotated around the new translated origin.

A Frame is useful to define the position and orientation of a 3D rigid object, using its matrix() method, as shown below:

// Builds a Frame at position (0.5,0,0) and oriented such that its Y axis is
along the (1,1,1)
// direction. One could also have used setPosition() and setOrientation().
Frame fr(Vec(0.5,0,0), Quaternion(Vec(0,1,0), Vec(1,1,1)));
glPushMatrix();
glMultMatrixd(fr.matrix());
// Draw your object here, in the local fr coordinate system.
glPopMatrix();

Many functions are provided to transform a 3D point from one coordinate system (Frame) to an other: see coordinatesOf(), inverseCoordinatesOf(), coordinatesOfIn(), coordinatesOfFrom()...

You may also want to transform a 3D vector (such as a normal), which corresponds to applying only the rotational part of the frame transformation: see transformOf() and inverseTransformOf(). See the frameTransform example for an illustration.

The translation() and the rotation() that are encapsulated in a Frame can also be used to represent a rigid transformation of space. Such a transformation can also be interpreted as a change of coordinate system, and the coordinate system conversion functions actually allow you to use a Frame as a rigid transformation. Use inverseCoordinatesOf() (resp. coordinatesOf()) to apply the transformation (resp. its inverse). Note the inversion.

Hierarchy of Frames

The position and the orientation of a Frame are actually defined with respect to a referenceFrame(). The default referenceFrame() is the world coordinate system (represented by a NULL referenceFrame()). If you setReferenceFrame() to a different Frame, you must then differentiate:

A Frame is actually defined by its translation() with respect to its referenceFrame(), and then by a rotation() of the coordinate system around the new translated origin.

This terminology for local (translation() and rotation()) and global (position() and orientation()) definitions is used in all the methods' names and should be sufficient to prevent ambiguities. These notions are obviously identical when the referenceFrame() is NULL, i.e. when the Frame is defined in the world coordinate system (the one you are in at the beginning of the QGLViewer::draw() method, see the introduction page).

Frames can hence easily be organized in a tree hierarchy, which root is the world coordinate system. A loop in the hierarchy would result in an inconsistent (multiple) Frame definition. settingAsReferenceFrameWillCreateALoop() checks this and prevents setReferenceFrame() from creating such a loop.

This frame hierarchy is used in methods like coordinatesOfIn(), coordinatesOfFrom()... which allow coordinates (or vector) conversions from a Frame to any other one (including the world coordinate system).

However, one must note that this hierarchical representation is internal to the Frame classes. When the Frames represent OpenGL coordinates system, one should map this hierarchical representation to the OpenGL GL_MODELVIEW matrix stack. See the matrix() documentation for details.

Constraints

An interesting feature of Frames is that their displacements can be constrained. When a Constraint is attached to a Frame, it filters the input of translate() and rotate(), and only the resulting filtered motion is applied to the Frame. The default constraint() is NULL resulting in no filtering. Use setConstraint() to attach a Constraint to a frame.

Constraints are especially usefull for the ManipulatedFrame instances, in order to forbid some mouse motions. See the constrainedFrame, constrainedCamera and luxo examples for an illustration.

Classical constraints are provided for convenience (see LocalConstraint, WorldConstraint and CameraConstraint) and new constraints can very easily be implemented.

Derived classes

The ManipulatedFrame class inherits Frame and implements a mouse motion convertion, so that a Frame (and hence an object) can be manipulated in the scene with the mouse.

Constructor & Destructor Documentation

◆ Frame() [1/3]

Frame ( )

Creates a default Frame.

Its position() is (0,0,0) and it has an identity orientation() Quaternion. The referenceFrame() and the constraint() are NULL.

◆ ~Frame()

virtual ~Frame ( )
virtual

Virtual destructor. Empty.

◆ Frame() [2/3]

Frame ( const Frame &  frame)

Copy constructor.

The translation() and rotation() as well as constraint() and referenceFrame() pointers are copied.

◆ Frame() [3/3]

Frame ( const Vec position,
const Quaternion orientation 
)

Creates a Frame with a position() and an orientation().

See the Vec and Quaternion documentations for convenient constructors and methods.

The Frame is defined in the world coordinate system (its referenceFrame() is NULL). It has a NULL associated constraint().

Member Function Documentation

◆ alignWithFrame()

void alignWithFrame ( const Frame *const  frame,
bool  move = false,
qreal  threshold = 0.0 
)

Aligns the Frame with frame, so that two of their axis are parallel.

If one of the X, Y and Z axis of the Frame is almost parallel to any of the X, Y, or Z axis of frame, the Frame is rotated so that these two axis actually become parallel.

If, after this first rotation, two other axis are also almost parallel, a second alignment is performed. The two frames then have identical orientations, up to 90 degrees rotations.

threshold measures how close two axis must be to be considered parallel. It is compared with the absolute values of the dot product of the normalized axis. As a result, useful range is sqrt(2)/2 (systematic alignment) to 1 (no alignment).

When move is set to true, the Frame position() is also affected by the alignment. The new Frame's position() is such that the frame position (computed with coordinatesOf(), in the Frame coordinates system) does not change.

frame may be NULL and then represents the world coordinate system (same convention than for the referenceFrame()).

The rotation (and translation when move is true) applied to the Frame are filtered by the possible constraint().

◆ constraint()

Constraint* constraint ( ) const

Returns the current constraint applied to the Frame.

A NULL value (default) means that no Constraint is used to filter Frame translation and rotation. See the Constraint class documentation for details.

You may have to use a dynamic_cast to convert the result to a Constraint derived class.

◆ coordinatesOf()

Vec coordinatesOf ( const Vec src) const

Returns the Frame coordinates of a point src defined in the world coordinate system (converts from world to Frame).

inverseCoordinatesOf() performs the inverse convertion. transformOf() converts 3D vectors instead of 3D coordinates.

See the frameTransform example for an illustration.

◆ coordinatesOfFrom()

Vec coordinatesOfFrom ( const Vec src,
const Frame *const  from 
) const

Returns the Frame coordinates of the point whose position in the from coordinate system is src (converts from from to Frame).

coordinatesOfIn() performs the inverse transformation.

◆ coordinatesOfIn()

Vec coordinatesOfIn ( const Vec src,
const Frame *const  in 
) const

Returns the in coordinates of the point whose position in the Frame coordinate system is src (converts from Frame to in).

coordinatesOfFrom() performs the inverse transformation.

◆ domElement()

QDomElement domElement ( const QString &  name,
QDomDocument &  document 
) const
virtual

Returns an XML QDomElement that represents the Frame.

name is the name of the QDomElement tag. doc is the QDomDocument factory used to create QDomElement.

The resulting QDomElement looks like:

<name>
<position x=".." y=".." z=".." />
<orientation q0=".." q1=".." q2=".." q3=".." />
</name>

Use initFromDOMElement() to restore the Frame state from the resulting QDomElement.

See Vec::domElement() for a complete example. See also Quaternion::domElement(), Camera::domElement()...

Attention
The constraint() and referenceFrame() are not saved in the QDomElement.

Reimplemented in ManipulatedFrame, and ManipulatedCameraFrame.

◆ getCoordinatesOf()

void getCoordinatesOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as coordinatesOf(), but with qreal parameters.

◆ getCoordinatesOfFrom()

void getCoordinatesOfFrom ( const qreal  src[3],
qreal  res[3],
const Frame *const  from 
) const

Same as coordinatesOfFrom(), but with qreal parameters.

◆ getCoordinatesOfIn()

void getCoordinatesOfIn ( const qreal  src[3],
qreal  res[3],
const Frame *const  in 
) const

Same as coordinatesOfIn(), but with qreal parameters.

◆ getInverseCoordinatesOf()

void getInverseCoordinatesOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as inverseCoordinatesOf(), but with qreal parameters.

◆ getInverseTransformOf()

void getInverseTransformOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as inverseTransformOf(), but with qreal parameters.

◆ getLocalCoordinatesOf()

void getLocalCoordinatesOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as localCoordinatesOf(), but with qreal parameters.

◆ getLocalInverseCoordinatesOf()

void getLocalInverseCoordinatesOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as localInverseCoordinatesOf(), but with qreal parameters.

◆ getLocalInverseTransformOf()

void getLocalInverseTransformOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as localInverseTransformOf(), but with qreal parameters.

◆ getLocalTransformOf()

void getLocalTransformOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as localTransformOf(), but with qreal parameters.

◆ getMatrix() [1/2]

void getMatrix ( GLdouble  m[4][4]) const

GLdouble[4][4] version of matrix(). See also getWorldMatrix() and matrix().

◆ getMatrix() [2/2]

void getMatrix ( GLdouble  m[16]) const

GLdouble[16] version of matrix(). See also getWorldMatrix() and matrix().

◆ getOrientation()

void getOrientation ( qreal &  q0,
qreal &  q1,
qreal &  q2,
qreal &  q3 
) const

Get the current orientation of the frame (same as orientation()). Parameters are the orientation Quaternion values. See also setOrientation().

The \p q are set to the orientation() of the Frame.

See Quaternion::Quaternion(qreal, qreal, qreal, qreal) for details on q.

◆ getPosition()

void getPosition ( qreal &  x,
qreal &  y,
qreal &  z 
) const

x, y and z are set to the position() of the Frame.

◆ getRotation()

void getRotation ( qreal &  q0,
qreal &  q1,
qreal &  q2,
qreal &  q3 
) const

The q are set to the rotation() of the Frame.

See Quaternion::Quaternion(qreal, qreal, qreal, qreal) for details on q.

◆ getTransformOf()

void getTransformOf ( const qreal  src[3],
qreal  res[3] 
) const

Same as transformOf(), but with qreal parameters.

◆ getTransformOfFrom()

void getTransformOfFrom ( const qreal  src[3],
qreal  res[3],
const Frame *const  from 
) const

Same as transformOfFrom(), but with qreal parameters.

◆ getTransformOfIn()

void getTransformOfIn ( const qreal  src[3],
qreal  res[3],
const Frame *const  in 
) const

Same as transformOfIn(), but with qreal parameters.

◆ getTranslation()

void getTranslation ( qreal &  x,
qreal &  y,
qreal &  z 
) const

Fill x, y and z with the translation() of the Frame.

◆ getWorldMatrix() [1/2]

void getWorldMatrix ( GLdouble  m[4][4]) const

qreal[4][4] parameter version of worldMatrix(). See also getMatrix() and matrix().

◆ getWorldMatrix() [2/2]

void getWorldMatrix ( GLdouble  m[16]) const

qreal[16] parameter version of worldMatrix(). See also getMatrix() and matrix().

◆ initFromDOMElement

void initFromDOMElement ( const QDomElement &  element)
virtualslot

Restores the Frame state from a QDomElement created by domElement().

See domElement() for the QDomElement syntax. See the Vec::initFromDOMElement() and Quaternion::initFromDOMElement() documentations for details on default values if an argument is missing.

Attention
The constraint() and referenceFrame() are not restored by this method and are left unchanged.

◆ interpolated

void interpolated ( )
signal

This signal is emitted when the Frame is interpolated by a KeyFrameInterpolator.

See the KeyFrameInterpolator documentation for details.

If a KeyFrameInterpolator is used to successively interpolate several Frames in your scene, connect the KeyFrameInterpolator::interpolated() signal instead (identical, but independent of the interpolated Frame).

◆ inverse()

Frame inverse ( ) const

Returns a Frame representing the inverse of the Frame space transformation.

The rotation() of the new Frame is the Quaternion::inverse() of the original rotation. Its translation() is the negated inverse rotated image of the original translation.

If a Frame is considered as a space rigid transformation (translation and rotation), the inverse() Frame performs the inverse transformation.

Only the local Frame transformation (i.e. defined with respect to the referenceFrame()) is inverted. Use worldInverse() for a global inverse.

The resulting Frame has the same referenceFrame() as the Frame and a NULL constraint().

Note
The scaling factor of the 4x4 matrix is 1.0.

◆ inverseCoordinatesOf()

Vec inverseCoordinatesOf ( const Vec src) const

Returns the world coordinates of the point whose position in the Frame coordinate system is src (converts from Frame to world).

coordinatesOf() performs the inverse convertion. Use inverseTransformOf() to transform 3D vectors instead of 3D coordinates.

◆ inverseTransformOf()

Vec inverseTransformOf ( const Vec src) const

Returns the world transform of the vector whose coordinates in the Frame coordinate system is src (converts vectors from Frame to world).

transformOf() performs the inverse transformation. Use inverseCoordinatesOf() to transform 3D coordinates instead of 3D vectors.

◆ localCoordinatesOf()

Vec localCoordinatesOf ( const Vec src) const

Returns the Frame coordinates of a point src defined in the referenceFrame() coordinate system (converts from referenceFrame() to Frame).

localInverseCoordinatesOf() performs the inverse convertion. See also localTransformOf().

◆ localInverseCoordinatesOf()

Vec localInverseCoordinatesOf ( const Vec src) const

Returns the referenceFrame() coordinates of a point src defined in the Frame coordinate system (converts from Frame to referenceFrame()).

localCoordinatesOf() performs the inverse convertion. See also localInverseTransformOf().

◆ localInverseTransformOf()

Vec localInverseTransformOf ( const Vec src) const

Returns the referenceFrame() transform of a vector src defined in the Frame coordinate system (converts vectors from Frame to referenceFrame()).

localTransformOf() performs the inverse transformation. See also localInverseCoordinatesOf().

◆ localTransformOf()

Vec localTransformOf ( const Vec src) const

Returns the Frame transform of a vector src defined in the referenceFrame() coordinate system (converts vectors from referenceFrame() to Frame).

localInverseTransformOf() performs the inverse transformation. See also localCoordinatesOf().

◆ matrix()

const GLdouble * matrix ( ) const

Returns the 4x4 OpenGL transformation matrix represented by the Frame.

This method should be used in conjunction with glMultMatrixd() to modify the OpenGL modelview matrix from a Frame hierarchy. With this Frame hierarchy:

Frame* body = new Frame();
Frame* leftArm = new Frame();
Frame* rightArm = new Frame();
leftArm->setReferenceFrame(body);
rightArm->setReferenceFrame(body);

The associated OpenGL drawing code should look like:

void Viewer::draw()
{
glPushMatrix();
glMultMatrixd(body->matrix());
drawBody();
glPushMatrix();
glMultMatrixd(leftArm->matrix());
drawArm();
glPopMatrix();
glPushMatrix();
glMultMatrixd(rightArm->matrix());
drawArm();
glPopMatrix();
glPopMatrix();
}

Note the use of nested glPushMatrix() and glPopMatrix() blocks to represent the frame hierarchy: leftArm and rightArm are both correctly drawn with respect to the body coordinate system.

This matrix only represents the local Frame transformation (i.e. with respect to the referenceFrame()). Use worldMatrix() to get the full Frame transformation matrix (i.e. from the world to the Frame coordinate system). These two match when the referenceFrame() is NULL.

The result is only valid until the next call to matrix(), getMatrix(), worldMatrix() or getWorldMatrix(). Use it immediately (as above) or use getMatrix() instead.

Attention
The OpenGL format of the result is the transpose of the actual mathematical European representation (translation is on the last line instead of the last column).
Note
The scaling factor of the 4x4 matrix is 1.0.

◆ modified

void modified ( )
signal

This signal is emitted whenever the position() or the orientation() of the Frame is modified.

Connect this signal to any object that must be notified:

QObject::connect(myFrame, SIGNAL(modified()), myObject, SLOT(update()));

Use the QGLViewer::QGLViewerPool() to connect the signal to all the viewers.

Note
If your Frame is part of a Frame hierarchy (see referenceFrame()), a modification of one of the parents of this Frame will not emit this signal. Use code like this to change this behavior (you can do this recursively for all the referenceFrame() until the NULL world root frame is encountered):
// Emits the Frame modified() signal when its referenceFrame() is modified().
connect(myFrame->referenceFrame(), SIGNAL(modified()), myFrame,
SIGNAL(modified()));
Attention
Connecting this signal to a QOpenGLWidget::update() slot (or a method that calls it) will prevent you from modifying the Frame inside your QGLViewer::draw() method as it would result in an infinite loop. However, QGLViewer::draw() should not modify the scene.
Note
Note that this signal might be emitted even if the Frame is not actually modified, for instance after a translate(Vec(0,0,0)) or a setPosition(position()).

◆ operator=()

Frame & operator= ( const Frame &  frame)

Equal operator.

The referenceFrame() and constraint() pointers are copied.

Attention
Signal and slot connections are not copied.

◆ orientation()

Quaternion orientation ( ) const

Returns the orientation of the Frame, defined in the world coordinate system. See also position(), setOrientation() and rotation().

◆ position()

Vec position ( ) const

Returns the position of the Frame, defined in the world coordinate system. See also orientation(), setPosition() and translation().

◆ projectOnLine()

void projectOnLine ( const Vec origin,
const Vec direction 
)

Translates the Frame so that its position() lies on the line defined by origin and direction (defined in the world coordinate system).

Simply uses an orthogonal projection. direction does not need to be normalized.

◆ referenceFrame()

const Frame* referenceFrame ( ) const

Returns the reference Frame, in which coordinates system the Frame is defined.

The translation() and rotation() of the Frame are defined with respect to the referenceFrame() coordinate system. A NULL referenceFrame() (default value) means that the Frame is defined in the world coordinate system.

Use position() and orientation() to recursively convert values along the referenceFrame() chain and to get values expressed in the world coordinate system. The values match when the referenceFrame() is NULL.

Use setReferenceFrame() to set this value and create a Frame hierarchy. Convenient functions allow you to convert 3D coordinates from one Frame to an other: see coordinatesOf(), localCoordinatesOf(), coordinatesOfIn() and their inverse functions.

Vectors can also be converted using transformOf(), transformOfIn, localTransformOf() and their inverse functions.

◆ rotate() [1/4]

void rotate ( Quaternion q)

Same as rotate(const Quaternion&) but q may be modified to satisfy the rotation constraint(). Its new value corresponds to the rotation that has actually been applied to the Frame.

◆ rotate() [2/4]

void rotate ( const Quaternion q)

Rotates the Frame by q (defined in the Frame coordinate system): R = R*q.

The rotation actually applied to the Frame may differ from q since it can be filtered by the constraint(). Use rotate(Quaternion&) or setRotationWithConstraint() to retrieve the filtered rotation value. Use setRotation() to directly rotate the Frame without taking the constraint() into account.

See also translate(const Vec&). Emits the modified() signal.

◆ rotate() [3/4]

void rotate ( qreal  q0,
qreal  q1,
qreal  q2,
qreal  q3 
)

Same as rotate(const Quaternion&) but with qreal Quaternion parameters.

◆ rotate() [4/4]

void rotate ( qreal &  q0,
qreal &  q1,
qreal &  q2,
qreal &  q3 
)

Same as rotate(Quaternion&) but with qreal Quaternion parameters.

◆ rotateAroundPoint() [1/2]

void rotateAroundPoint ( Quaternion rotation,
const Vec point 
)

Makes the Frame rotate() by rotation around point.

point is defined in the world coordinate system, while the rotation axis is defined in the Frame coordinate system.

If the Frame has a constraint(), rotation is first constrained using Constraint::constrainRotation(). The translation which results from the filtered rotation around point is then computed and filtered using Constraint::constrainTranslation(). The new rotation value corresponds to the rotation that has actually been applied to the Frame.

Emits the modified() signal.

◆ rotateAroundPoint() [2/2]

void rotateAroundPoint ( const Quaternion rotation,
const Vec point 
)

Same as rotateAroundPoint(), but with a const rotation Quaternion. Note that the actual rotation may differ since it can be filtered by the constraint().

◆ rotation()

Quaternion rotation ( ) const

Returns the Frame rotation, defined with respect to the referenceFrame().

Use orientation() to get the result in the world coordinates. These two values are identical when the referenceFrame() is NULL (default).

See also setRotation() and setRotationWithConstraint().

Returns the current Quaternion orientation. See setRotation().

◆ setConstraint()

void setConstraint ( Constraint *const  constraint)

Sets the constraint() attached to the Frame.

A NULL value means no constraint. The previous constraint() should be deleted by the calling method if needed.

◆ setFromMatrix() [1/2]

void setFromMatrix ( const GLdouble  m[4][4])

This is an overloaded method provided for convenience. Same as setFromMatrix().

◆ setFromMatrix() [2/2]

void setFromMatrix ( const GLdouble  m[16])

Sets the Frame from an OpenGL matrix representation (rotation in the upper left 3x3 matrix and translation on the last line).

Hence, if a code fragment looks like:

GLdouble m[16]={...};
glMultMatrixd(m);

It is equivalent to write:

Frame fr;
fr.setFromMatrix(m);
glMultMatrixd(fr.matrix());

Using this conversion, you can benefit from the powerful Frame transformation methods to translate points and vectors to and from the Frame coordinate system to any other Frame coordinate system (including the world coordinate system). See coordinatesOf() and transformOf().

Emits the modified() signal. See also matrix(), getMatrix() and Quaternion::setFromRotationMatrix().

Attention
A Frame does not contain a scale factor. The possible scaling in m will not be converted into the Frame by this method.

◆ setOrientation() [1/2]

void setOrientation ( const Quaternion orientation)

Sets the orientation() of the Frame, defined in the world coordinate system. Emits the modified() signal.

Use setRotation() to define the local frame rotation (with respect to the referenceFrame()). The potential constraint() of the Frame is not taken into account, use setOrientationWithConstraint() instead.

◆ setOrientation() [2/2]

void setOrientation ( qreal  q0,
qreal  q1,
qreal  q2,
qreal  q3 
)

Same as setOrientation(), but with qreal parameters.

◆ setOrientationWithConstraint()

void setOrientationWithConstraint ( Quaternion orientation)

Same as setOrientation(), but orientation is modified so that the potential constraint() of the Frame is satisfied. See also setPositionWithConstraint() and setRotationWithConstraint().

◆ setPosition() [1/2]

void setPosition ( const Vec position)

Sets the position() of the Frame, defined in the world coordinate system. Emits the modified() signal.

Use setTranslation() to define the local frame translation (with respect to the referenceFrame()). The potential constraint() of the Frame is not taken into account, use setPositionWithConstraint() instead.

◆ setPosition() [2/2]

void setPosition ( qreal  x,
qreal  y,
qreal  z 
)

Same as setPosition(), but with qreal parameters.

◆ setPositionAndOrientation()

void setPositionAndOrientation ( const Vec position,
const Quaternion orientation 
)

Same as successive calls to setPosition() and then setOrientation().

Only one modified() signal is emitted, which is convenient if this signal is connected to a QGLViewer::update() slot. See also setTranslationAndRotation() and setPositionAndOrientationWithConstraint().

◆ setPositionAndOrientationWithConstraint()

void setPositionAndOrientationWithConstraint ( Vec position,
Quaternion orientation 
)

Same as setPositionAndOrientation() but position and orientation are modified to satisfy the constraint. Emits the modified() signal.

◆ setPositionWithConstraint()

void setPositionWithConstraint ( Vec position)

Same as setPosition(), but position is modified so that the potential constraint() of the Frame is satisfied. See also setOrientationWithConstraint() and setTranslationWithConstraint().

◆ setReferenceFrame()

void setReferenceFrame ( const Frame *const  refFrame)

Sets the referenceFrame() of the Frame.

The Frame translation() and rotation() are then defined in the referenceFrame() coordinate system. Use position() and orientation() to express these in the world coordinate system.

Emits the modified() signal if refFrame differs from the current referenceFrame().

Using this method, you can create a hierarchy of Frames. This hierarchy needs to be a tree, which root is the world coordinate system (i.e. a NULL referenceFrame()). A warning is printed and no action is performed if setting refFrame as the referenceFrame() would create a loop in the Frame hierarchy (see settingAsReferenceFrameWillCreateALoop()).

◆ setRotation() [1/2]

void setRotation ( const Quaternion rotation)

Set the current rotation Quaternion. See rotation() and the different Quaternion constructors. Emits the modified() signal. See also setTranslation() and setRotationWithConstraint().

Sets the rotation() of the Frame, locally defined with respect to the referenceFrame(). Emits the modified() signal.

Use setOrientation() to define the world coordinates orientation(). The potential constraint() of the Frame is not taken into account, use setRotationWithConstraint() instead.

◆ setRotation() [2/2]

void setRotation ( qreal  q0,
qreal  q1,
qreal  q2,
qreal  q3 
)

Same as setRotation() but with qreal Quaternion parameters.

◆ setRotationWithConstraint()

void setRotationWithConstraint ( Quaternion rotation)

Same as setRotation(), but rotation is modified so that the potential constraint() of the Frame is satisfied.

Emits the modified() signal. See also setTranslationWithConstraint() and setOrientationWithConstraint().

◆ settingAsReferenceFrameWillCreateALoop()

bool settingAsReferenceFrameWillCreateALoop ( const Frame *const  frame)

Returns true if setting frame as the Frame's referenceFrame() would create a loop in the Frame hierarchy.

◆ setTranslation() [1/2]

void setTranslation ( const Vec translation)

Sets the translation() of the frame, locally defined with respect to the referenceFrame(). Emits the modified() signal.

Use setPosition() to define the world coordinates position(). Use setTranslationWithConstraint() to take into account the potential constraint() of the Frame.

◆ setTranslation() [2/2]

void setTranslation ( qreal  x,
qreal  y,
qreal  z 
)

Same as setTranslation(), but with qreal parameters.

◆ setTranslationAndRotation()

void setTranslationAndRotation ( const Vec translation,
const Quaternion rotation 
)

Same as successive calls to setTranslation() and then setRotation().

Only one modified() signal is emitted, which is convenient if this signal is connected to a QGLViewer::update() slot. See also setPositionAndOrientation() and setTranslationAndRotationWithConstraint().

◆ setTranslationAndRotationWithConstraint()

void setTranslationAndRotationWithConstraint ( Vec translation,
Quaternion rotation 
)

Same as setTranslationAndRotation(), but translation and orientation are modified to satisfy the constraint(). Emits the modified() signal.

◆ setTranslationWithConstraint()

void setTranslationWithConstraint ( Vec translation)

Same as setTranslation(), but translation is modified so that the potential constraint() of the Frame is satisfied.

Emits the modified() signal. See also setRotationWithConstraint() and setPositionWithConstraint().

◆ transformOf()

Vec transformOf ( const Vec src) const

Returns the Frame transform of a vector src defined in the world coordinate system (converts vectors from world to Frame).

inverseTransformOf() performs the inverse transformation. coordinatesOf() converts 3D coordinates instead of 3D vectors (here only the rotational part of the transformation is taken into account).

See the frameTransform example for an illustration.

◆ transformOfFrom()

Vec transformOfFrom ( const Vec src,
const Frame *const  from 
) const

Returns the Frame transform of the vector whose coordinates in the from coordinate system is src (converts vectors from from to Frame).

transformOfIn() performs the inverse transformation.

◆ transformOfIn()

Vec transformOfIn ( const Vec src,
const Frame *const  in 
) const

Returns the in transform of the vector whose coordinates in the Frame coordinate system is src (converts vectors from Frame to in).

transformOfFrom() performs the inverse transformation.

◆ translate() [1/4]

void translate ( Vec t)

Same as translate(const Vec&) but t may be modified to satisfy the translation constraint(). Its new value corresponds to the translation that has actually been applied to the Frame.

◆ translate() [2/4]

void translate ( const Vec t)

Translates the Frame of t (defined in the Frame coordinate system).

The translation actually applied to the Frame may differ from t since it can be filtered by the constraint(). Use translate(Vec&) or setTranslationWithConstraint() to retrieve the filtered translation value. Use setTranslation() to directly translate the Frame without taking the constraint() into account.

See also rotate(const Quaternion&). Emits the modified() signal.

◆ translate() [3/4]

void translate ( qreal  x,
qreal  y,
qreal  z 
)

Same as translate(const Vec&) but with qreal parameters.

◆ translate() [4/4]

void translate ( qreal &  x,
qreal &  y,
qreal &  z 
)

Same as translate(Vec&) but with qreal parameters.

◆ translation()

Vec translation ( ) const

Returns the Frame translation, defined with respect to the referenceFrame().

Use position() to get the result in the world coordinates. These two values are identical when the referenceFrame() is NULL (default).

See also setTranslation() and setTranslationWithConstraint().

◆ worldInverse()

Frame worldInverse ( ) const

Returns the inverse() of the Frame world transformation.

The orientation() of the new Frame is the Quaternion::inverse() of the original orientation. Its position() is the negated and inverse rotated image of the original position.

The result Frame has a NULL referenceFrame() and a NULL constraint().

Use inverse() for a local (i.e. with respect to referenceFrame()) transformation inverse.

◆ worldMatrix()

const GLdouble * worldMatrix ( ) const

Returns the 4x4 OpenGL transformation matrix represented by the Frame.

This method should be used in conjunction with glMultMatrixd() to modify the OpenGL modelview matrix from a Frame:

// The modelview here corresponds to the world coordinate system.
Frame fr(pos, Quaternion(from, to));
glPushMatrix();
glMultMatrixd(fr.worldMatrix());
// draw object in the fr coordinate system.
glPopMatrix();

This matrix represents the global Frame transformation: the entire referenceFrame() hierarchy is taken into account to define the Frame transformation from the world coordinate system. Use matrix() to get the local Frame transformation matrix (i.e. defined with respect to the referenceFrame()). These two match when the referenceFrame() is NULL.

The OpenGL format of the result is the transpose of the actual mathematical European representation (translation is on the last line instead of the last column).

Attention
The result is only valid until the next call to matrix(), getMatrix(), worldMatrix() or getWorldMatrix(). Use it immediately (as above) or use getWorldMatrix() instead.
Note
The scaling factor of the 4x4 matrix is 1.0.